15,183 research outputs found

    The edge engineering of topological Bi(111) bilayer

    Full text link
    A topological insulator is a novel quantum state, characterized by symmetry-protected non-trivial edge/surface states. Our first-principle simulations show the significant effects of the chemical decoration on edge states of topological Bi(111) bilayer nanoribbon, which remove the trivial edge state and recover the Dirac linear dispersion of topological edge state. By comparing the edge states with and without chemical decoration, the Bi(111) bilayer nanoribbon offers a simple system for assessing conductance fluctuation of edge states. The chemical decoration can also modify the penetration depth and the spin texture of edge states. A low-energy effective model is proposed to explain the distinctive spin texture of Bi(111) bilayer nanoribbon, which breaks the spin-momentum orthogonality along the armchair edge.Comment: 5 pages, 5 figure

    Statistics of Chaotic Resonances in an Optical Microcavity

    Full text link
    Distributions of eigenmodes are widely concerned in both bounded and open systems. In the realm of chaos, counting resonances can characterize the underlying dynamics (regular vs. chaotic), and is often instrumental to identify classical-to-quantum correspondence. Here, we study, both theoretically and experimentally, the statistics of chaotic resonances in an optical microcavity with a mixed phase space of both regular and chaotic dynamics. Information on the number of chaotic modes is extracted by counting regular modes, which couple to the former via dynamical tunneling. The experimental data are in agreement with a known semiclassical prediction for the dependence of the number of chaotic resonances on the number of open channels, while they deviate significantly from a purely random-matrix-theory-based treatment, in general. We ascribe this result to the ballistic decay of the rays, which occurs within Ehrenfest time, and importantly, within the timescale of transient chaos. The present approach may provide a general tool for the statistical analysis of chaotic resonances in open systems.Comment: 5 pages, 5 figures, and a supplemental informatio

    Ensuring Readability and Data-fidelity using Head-modifier Templates in Deep Type Description Generation

    Full text link
    A type description is a succinct noun compound which helps human and machines to quickly grasp the informative and distinctive information of an entity. Entities in most knowledge graphs (KGs) still lack such descriptions, thus calling for automatic methods to supplement such information. However, existing generative methods either overlook the grammatical structure or make factual mistakes in generated texts. To solve these problems, we propose a head-modifier template-based method to ensure the readability and data fidelity of generated type descriptions. We also propose a new dataset and two automatic metrics for this task. Experiments show that our method improves substantially compared with baselines and achieves state-of-the-art performance on both datasets.Comment: ACL 201

    Coherence assisted resonance with sub-lifetime-limited linewidth

    Get PDF
    We demonstrate a novel approach to obtain resonance linewidth below that limited by coherence lifetime. Cross correlation between induced intensity modulation of two lasers coupling the target resonance exhibits a narrow spectrum. 1/30 of the lifetime-limited width was achieved in a proof-of-principle experiment where two ground states are the target resonance levels. Attainable linewidth is only limited by laser shot noise in principle. Experimental results agree with an intuitive analytical model and numerical calculations qualitatively. This technique can be easily implemented and should be applicable to many atomic, molecular and solid state spin systems for spectroscopy, metrology and resonance based sensing and imaging.Comment: 5 pages 5 figure
    corecore